

Africa Solar Hydrogen Project (ASHyP) -Solar2Hydrogen system design and contribution to decarbonization for the COP27

October 2022

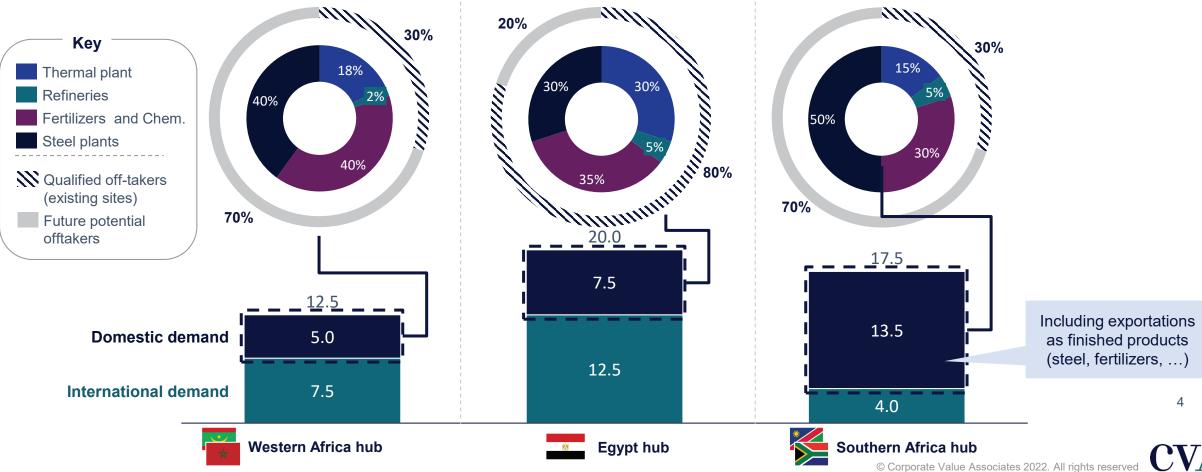
Agenda

1. African H2 hubs system design – Demand equation to address – 2030 and 2035

- 2. African H2 hubs system design Design and sizing of the 3 hubs
- 3. African H2 hubs system design Resulting costs for the 3 hubs
- 4. Value creation impact

H2 demand equation to address by hub – Vision 2030

A potential H2 demand of ~20Mt/y in 2030 in the 3 areas, shared between domestic demand (~45%) and exportation (55%); the domestic demand will concentrate around green steel materials and commodities (~40%) and green fertilizers and chemicals (~30%)


Estimated potential green H2 demand in 2030 and breakdown by sector (Mt/y)

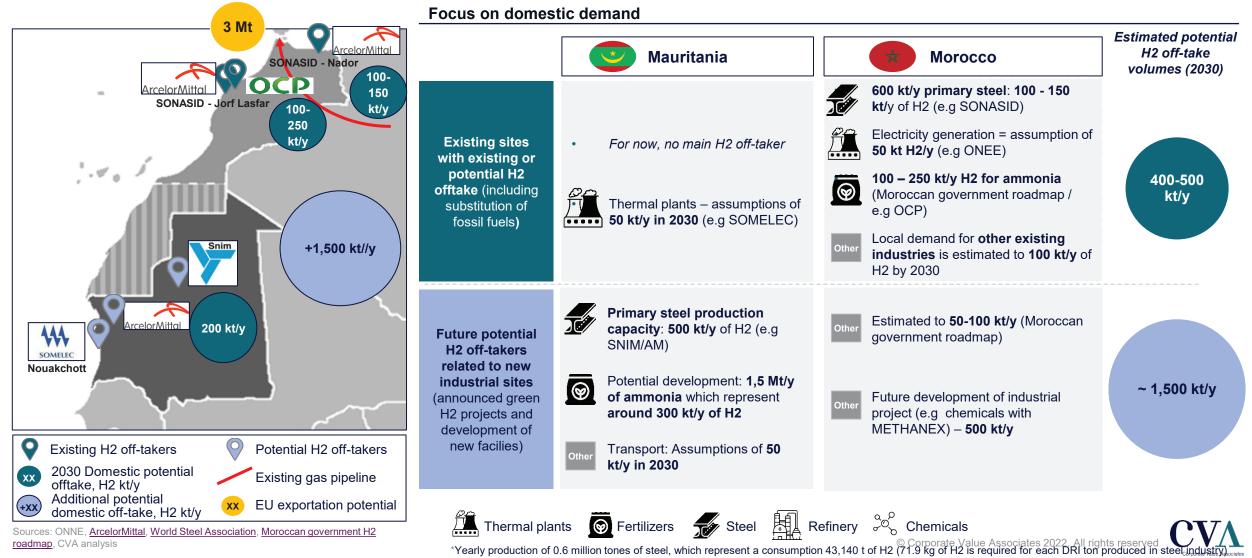
Sources: IEA database, IEA Global Hydrogen Review, CVA analysis

H2 demand equation to address by hub – Vision 2035

H2 demand might increase up to ~50 Mt/y in 2035 in the 3 African hubs, mainly driven by international demand and the emergence of new domestic off-takers / projects related to green gas competitiveness

Estimated potential green H2 demand in 2035 and breakdown by sector (Mt/y)

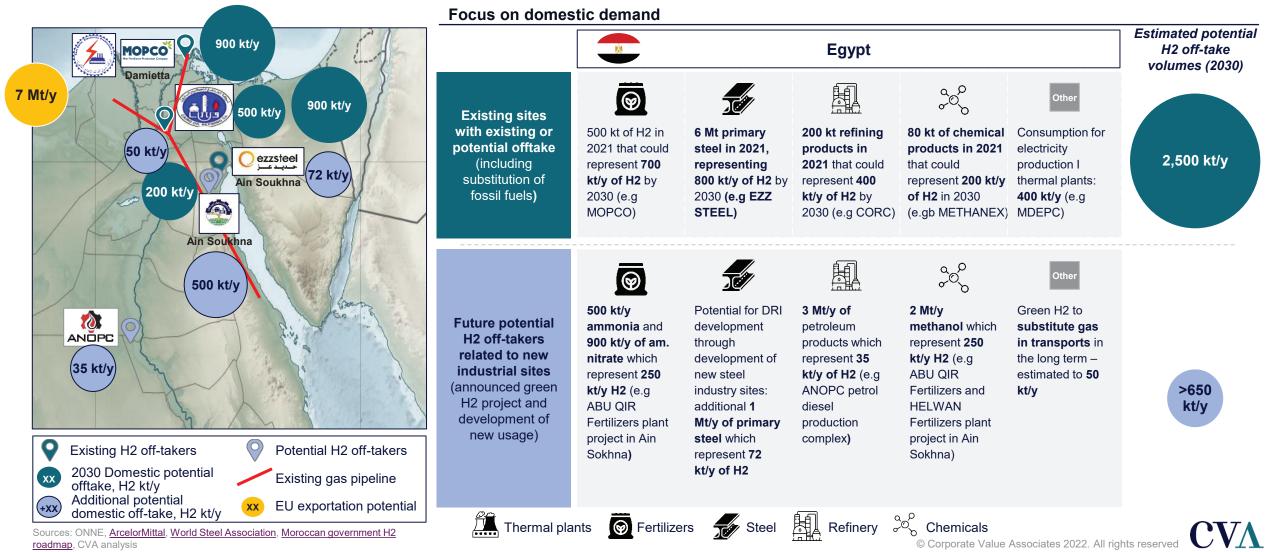
Sources: IEA database, IEA Global Hydrogen Review, CVA analysis



Detailed 2030 vision – H2 potential demand

Details of key sites' H2 demand to address – Western Africa – Vision 2030

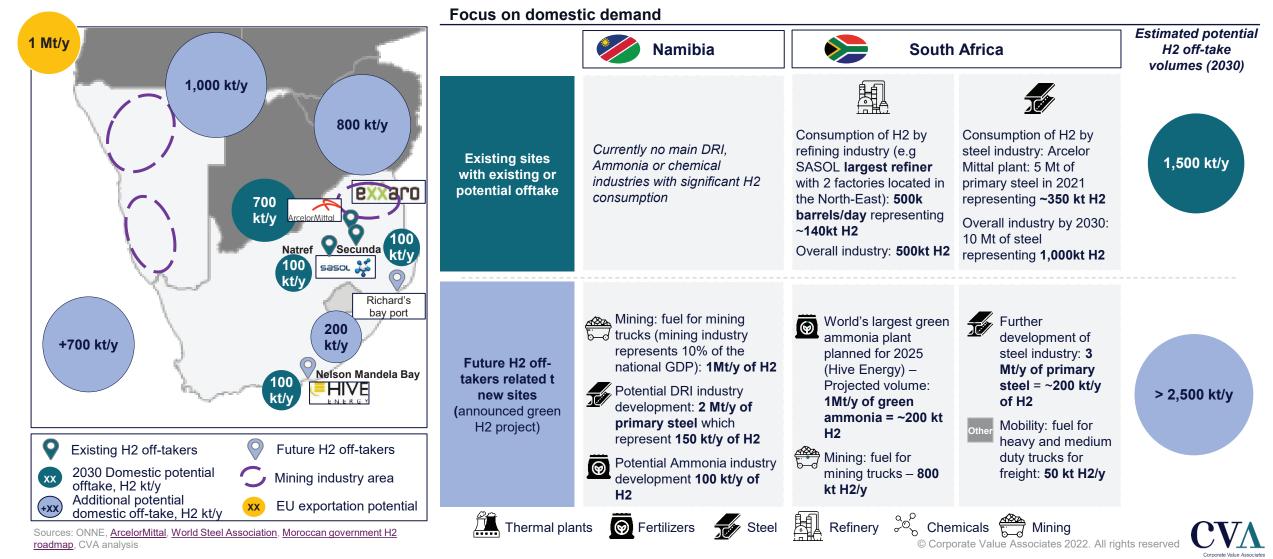
In Western Africa there is a significant future potential for domestic H2 off-take estimated up to 2 Mt/y considering existing and potential sites, as well as exportation demand (3 Mt/y)



Detailed 2030 vision – H2 potential demand

Details of key sites' H2 demand to address – Egypt – Vision 2030

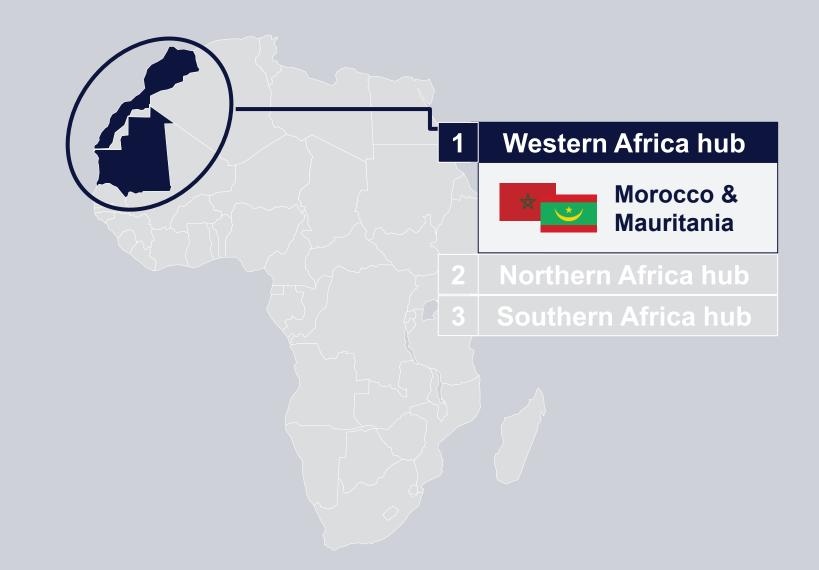
In Egypt, the existing potential for H2 off-take (2.5 Mt/y), combined with a potential domestic development (up to 0.6 Mt/y) is completed by a high potential exportation demand (7 Mt/y)



Detailed 2030 vision – H2 potential demand

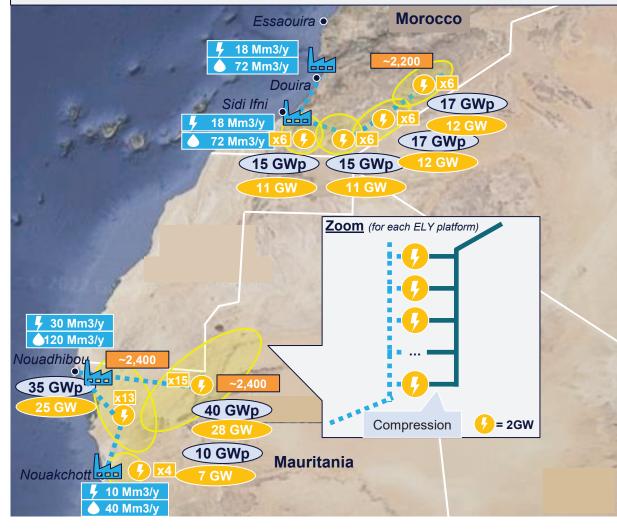
Details of key sites' H2 demand to address – Southern Africa – Vision 2030

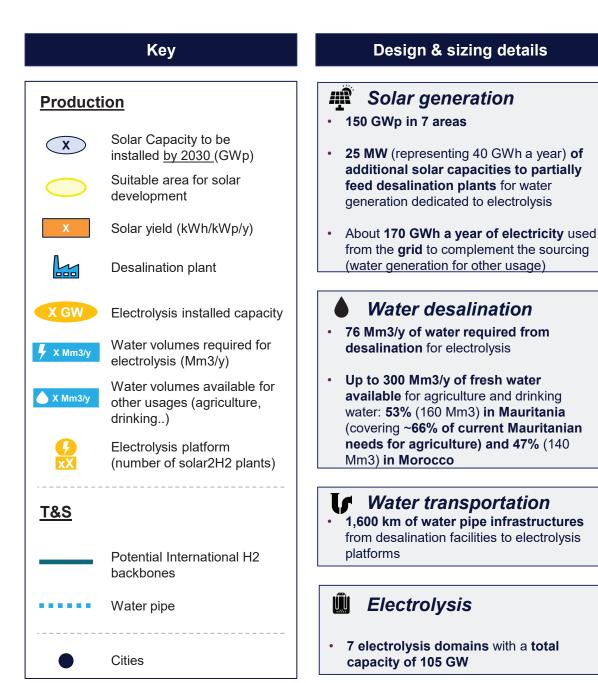
Domestic demand should be driven by a development of new H2 sites with announced projects (~2.5Mt H2/y), adding up to existing refineries and steel production sites (~1.5Mt)



Agenda

- 1. African H2 hubs system design Demand equation to address 2030 and 2035
- 2. African H2 hubs system design Design and sizing of the 3 hubs
- 3. African H2 hubs system design Resulting costs for the 3 hubs
- 4. Value creation impact



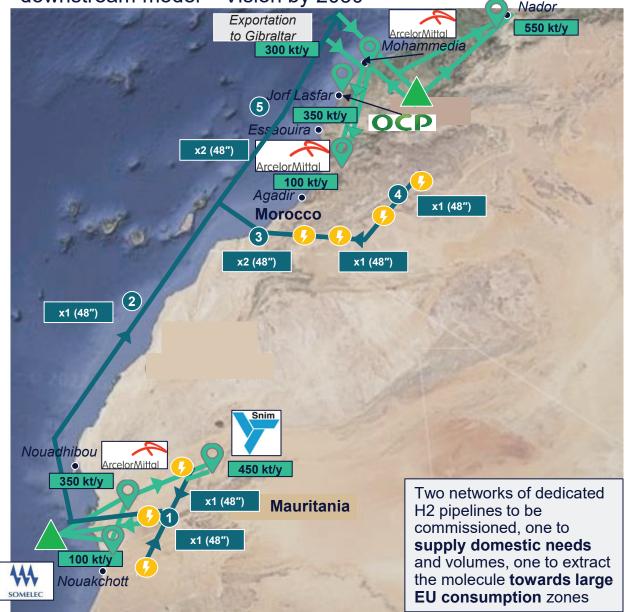


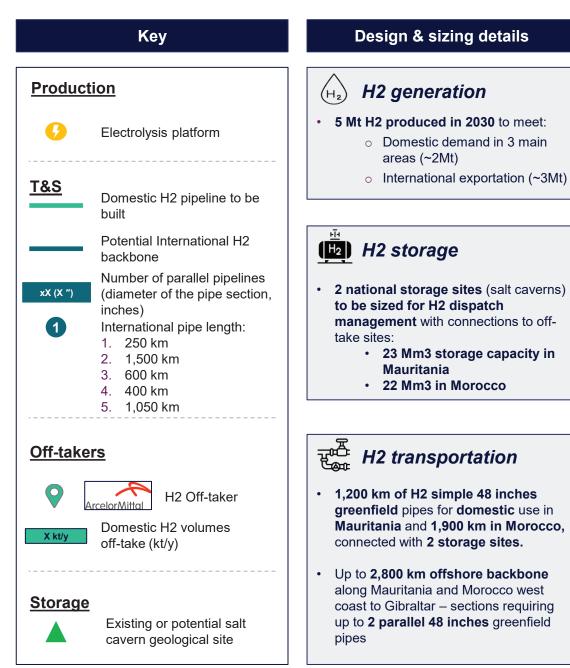
Focus on Morocco / Mauritanian hubs – Upstream model by **2030**: 150 GWp of solar capacity and 105 GWe of electrolysis capacity to be installed

Link between desalination plants and green H2 plants managed through the **development of a large fresh water supply system**, opening development potentials for a part of the countries

Focus on Morocco / Mauritanian hubs – Upstream model by **2035**: 360 GWp of solar capacity and 248 GWe of electrolysis capacity to be installed

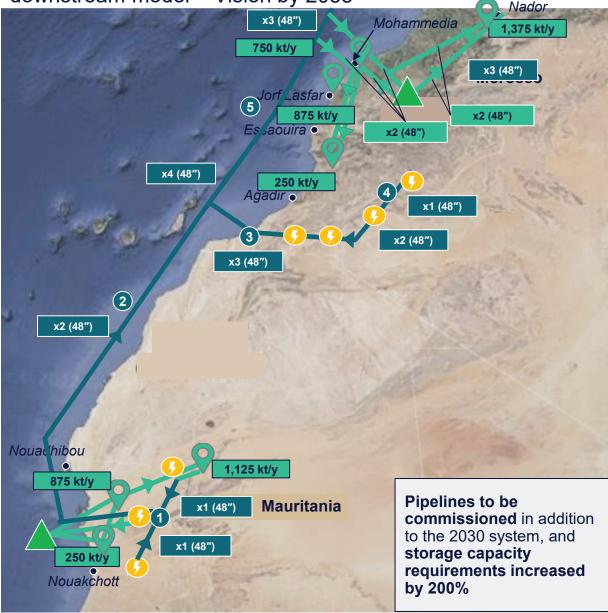
Solar and electrolysis capacities multiplied by ~2.5 vs. 2030 implying the commissioning of 63 new solar2H2 plants and 1 new desalination plants

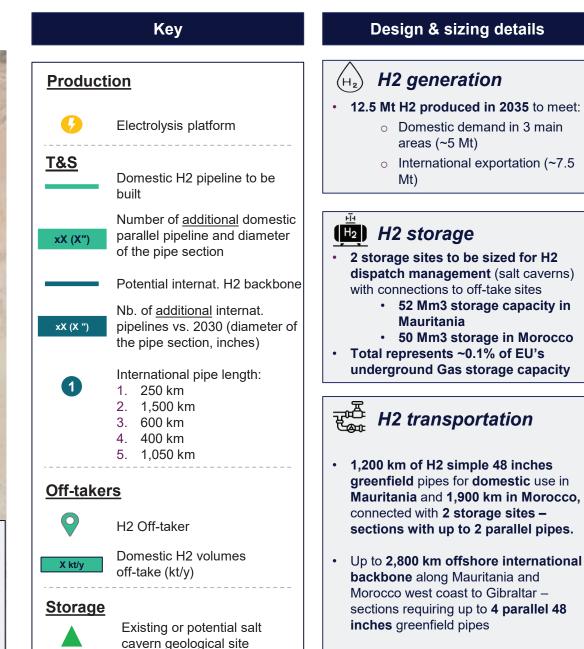



Design & sizing details Key *I*R Solar generation Production Up to 360 GWp in 7 areas, representing Solar Capacity to be around 0.5 Mha X installed by 2030 (GWp) 100 GWh/year of additional solar Suitable area for solar capacities to feed desalination plants development for water generation dedicated to ELY Solar yield (kWh/kWp/y) Water desalination Up to 200 Mm3/y of water required from Desalination plant desalination for electrolysis Electrolysis installed capacity X GW No additional desalination plants required in Morocco and 1 additional Water volumes required for desalination plant in Mauritania 🖌 X Mm3/y electrolysis (Mm3/y) Up to 800 Mm3/y of fresh water Water volumes available for 🛆 X Mm3/y other usages (agriculture, available for agriculture and drinking water: 53% (420 Mm3) in Mauritania drinking..) (covering ~33% of current Mauritanian needs for agriculture) and 47% (380 Electrolysis platform G Mm3) in Morocco covering (covering xХ (number of solar2H2 plants) ~2.5% of current Moroccan needs for agriculture) T&S Water transportation Potential International H2 Around 2,700 km of water pipe backbones infrastructures from desalination facilities Water pipe to electrolysis platforms Number of parallel water pipes хΧ required Electrolysis UU 7 electrolysis domains with a total Cities capacity of 250 GW

Note (1): Capacity of the largest desalination plants in the world is ~1 Mm3/day Sources: ONNE, ArcelorMittal, Moroccan government H2 roadmap, Economics of hydrogen, MISO energy, CVA analysis

Focus on Morocco / Mauritanian hubs – Midstream and downstream model – Vision by 2030


*When not detailed, the pipe is a simple 48" greenfield pipe

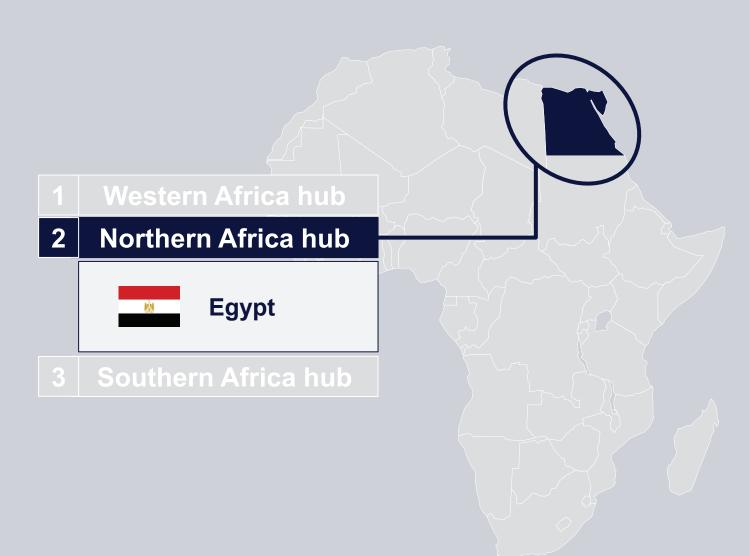

Sources: ONNE, ArcelorMittal, Moroccan government H2 roadmap, Economics of hydrogen, MISO energy, CVA analysis

Focus on Morocco / Mauritanian hubs – Midstream and downstream model – Vision by 2035

*Additional greenfield pipeline to the infrastructures built in 2030 - when not detailed, the pipe is a simple 48 inches greenfield pipe

Sources: ONNE, ArcelorMittal, Moroccan government H2 roadmap, Economics of hydrogen, MISO energy, CVA analysis

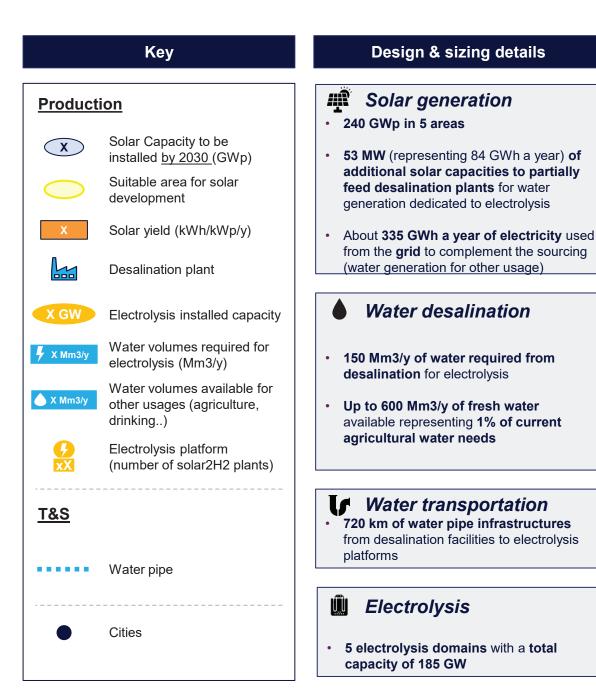
© Corporate Value Associates 2022. All rights reserved



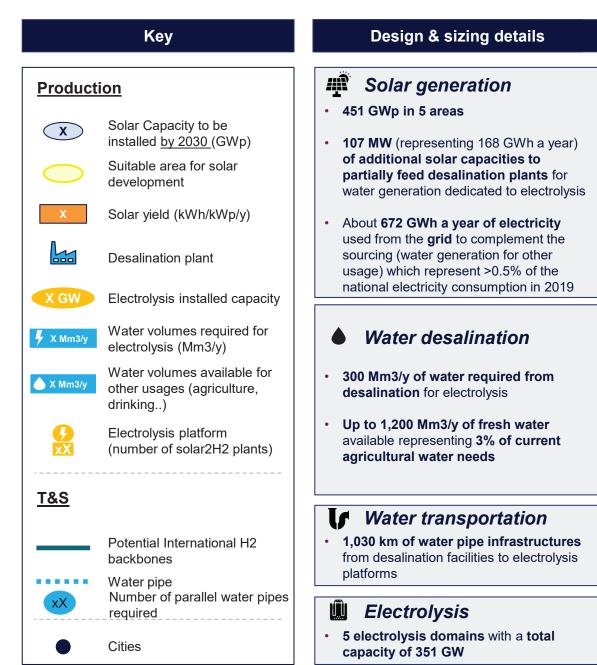
The H2 hub systems feature designs implying mass scale sizing while corresponding to managed capacities

The upstream and midstream sizing involves capacities falling into standards of existing industrial designs

	Capacity required	Check / benchmark	Capacity management
PV	 150 GWp by 2030 to 360 GWp by 2035 of solar capacity to be installed Surface power capacity density of 1.5 ha / MW 	 Total required surface of 225,000 ha by 2030 and 540,000 ha by 2035 : 0.1% to 0.3% of the total countries area 	\bigotimes
Desalination	 Desalination capacity required : 376 Mm3 by 2030 and 1,000 Mm3 by 2035 4 to 5 desalination facilities with a capacity of 250 Mm3/y 	 Desalination plants designed with a capacity of ~250 Mm3/y, i.e. ~70% of the current largest desalination plants in the world (e.g. in RAK, Saudi Arabia or in Taweelah, UAE) 	\bigotimes
Water pipe	 1,600 to 2,700 km of water transportation pipe infrastructures, including double pipe sections by 2035 Water pipe designed with a maximum of 60 inches 	 Total length acceptable, i.e. 90% of Manmade pipeline Water pipe designed with diameter of 60 inches, i.e. ~75% of the largest water pipeline diameters in the world (e.g. Oguz-Gabala-Baku Water Pipeline) 	000x current
Electrolysis	 Units of 2GWp captive solar plants, injecting in electrolysis platforms with a total electrolysis capacity of 105 GWe by 2030 and 248 GWe by 2035 	• ~300 MWe global electrolysis installed capacity in 2020	global electrolysis capacity
H2 pipe	 Total length of greenfield pipes infrastructures is 3,700 H2 pipes designed with 48 inches diameter 	 ~1% of total global brownfield transport infrastructure length in 2020 and around 4x Nord Stream gas pipe length 	\bigotimes
Storage	 45 Mm3 by 2030 and 102 Mm3 by 2035 of metric storage volume required 2 potential salt dome geological storage sites 	 ~0.1% of total EU underground storage capacities Typical salt cavern volume capacity is 0.5 to 1 Mm3 	

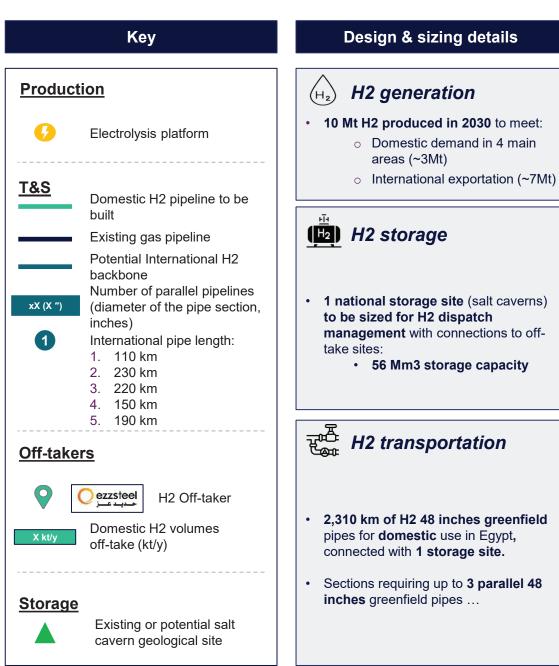


Focus on Egypt hub – Upstream model by **2030**: 240 GWp of solar capacity and 185 GWe of electrolysis capacity to be installed



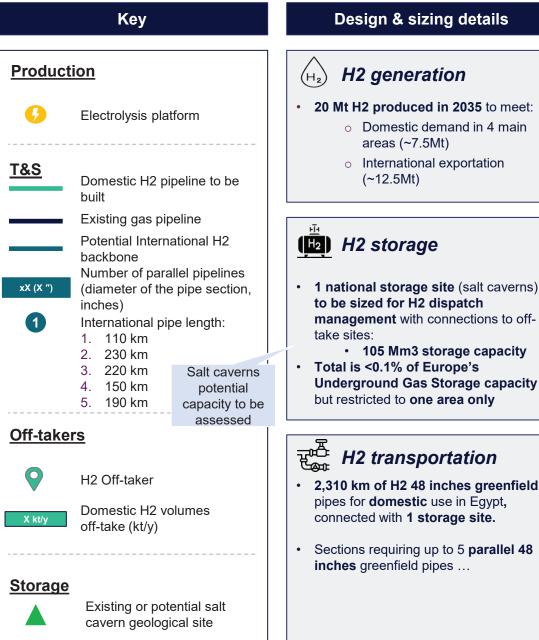
Focus on Egypt hub – Upstream model by **2035**: 451 GWp of solar capacity and 351 GWe of electrolysis capacity to be installed

Note (1): Capacity of the largest desalination plants in the world is ~1 Mm3/day Sources: Oxford Institute, <u>Economics of hydrogen</u>, NREL, CVA analysis



Focus on Egypt hub – Midstream and downstream model – Vision by 2030

*When not detailed, the pipe is a simple 48" greenfield pipe

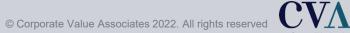

Sources: Oxford Institute, Economics of hydrogen, NREL, CVA analysis

Focus on Egypt hub – Midstream and downstream model – Vision by 2035

*Additional greenfield pipeline to the infrastructures built in 2030 – when not detailed, the pipe is a simple 48 inches greenfield pipe

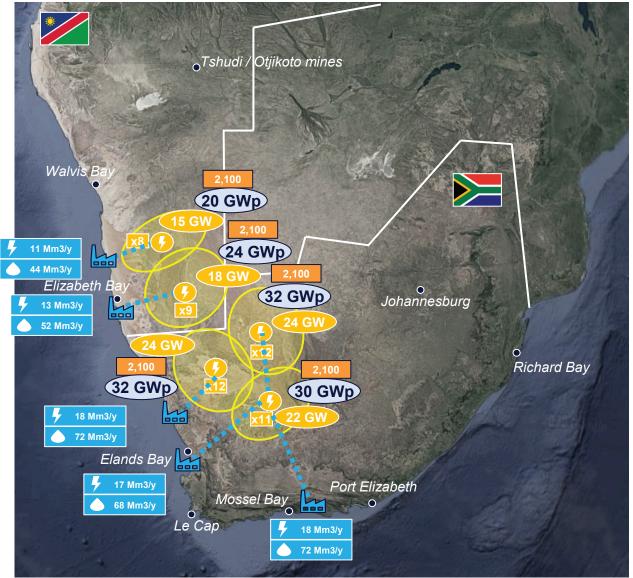
Sources: Oxford Institute, Economics of hydrogen, NREL, CVA analysis

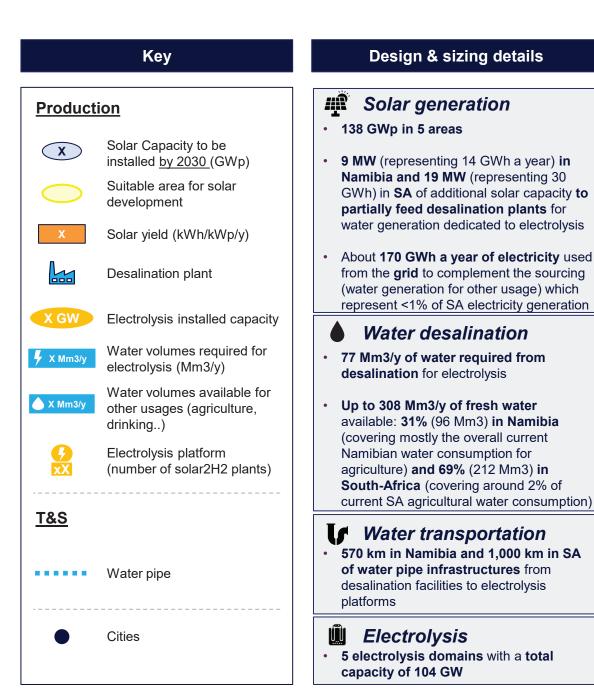



The H2 hub systems feature designs implying mass scale sizing while corresponding to managed capacities

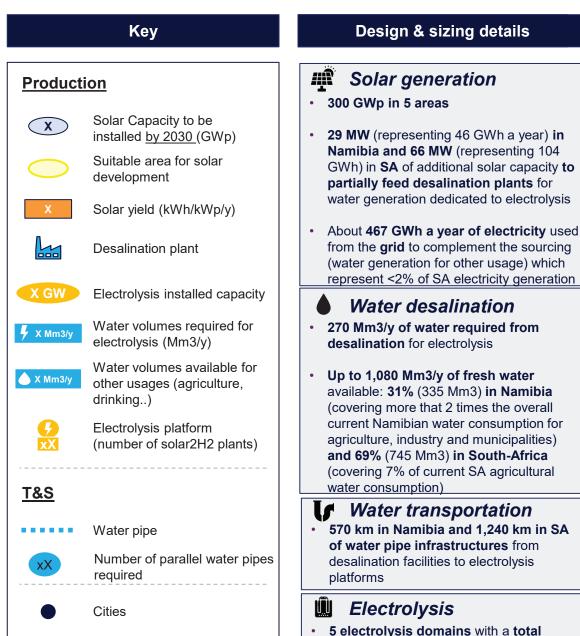
The upstream and midstream sizing involves capacities falling into standards of existing industrial designs

	Capacity required	Check / benchmark	Capacity management
PV	 240 GWp by 2030 to 451 GWp by 2035 of solar capacity to be installed Surface power capacity density of 1.5 ha / MW 	 Total required surface of 360,000 ha by 2030 and 677,000 ha by 2035 < 0.7% of the total countries area 	
Desalination	 Desalination capacity required : 750 Mm3 by 2030 and 1,500 Mm3 by 2035 6 desalination facilities with a capacity of 250 Mm3/y 	 Desalination plants designed with a capacity of ~250 Mm3/y, i.e. ~70% of the current largest desalination plants in the world (e.g. in RAK, Saudi Arabia or in Taweelah, UAE) 	\bigcirc
Water pipe	 720 to 1,030 km of water transportation pipe infrastructures, including one double pipe section by 2035 Water pipe designed with a maximum of 60 inches 	 Realistic length, ~30% of Manmade pipeline Water pipe designed with diameter of 60 inches, i.e. ~75% of the largest water pipeline diameters in the world (e.g. Oguz-Gabala-Baku Water Pipeline) 	~1000x current global
Electrolysis	 Units of 2GWp captive solar plants, injecting in electrolysis platforms with a total electrolysis capacity of 185 GWe by 2030 and 351 GWe by 2035 	 ~300 MWe global electrolysis installed capacity in 2020 	electrolysis capacity
H2 pipe	 Total cumulated length of greenfield pipes infrastructures is 2,310 km by 2030 and 4,000 by 2035 H2 pipes designed with 48 inches diameter Sections with up to 3 parallels pipes 	 <1% of total global brownfield transport infrastructures length in 2020 and around 2 to 4 times Nord Stream gas pipe length 	Limited
Storage	 56 Mm3 by 2030 and 105 Mm3 by 2035 of metric storage volume required Only 1 potential salt dome geological storage site 	 ~0.1% of total EU underground storage capacities Typical salt cavern volume capacity is 0.5 to 1 Mm3 	geological potential



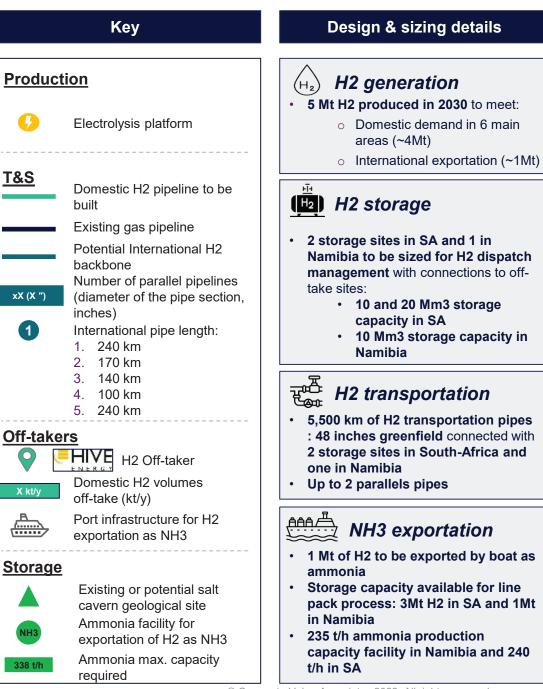


Focus on South-African hub – Upstream model by **2030**: 138 GWp of solar capacity and 104 GWe of electrolysis capacity to be installed

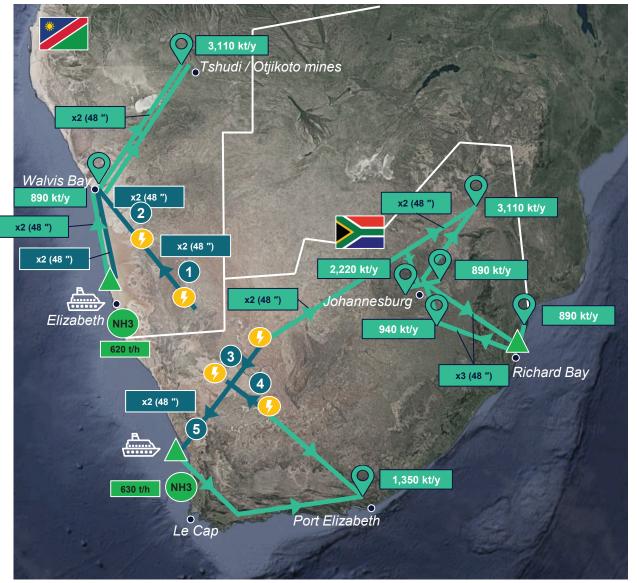

Sources: FAO Aquastat, CSIS, Department of Science and Innovation of South-Africa, CVA analysis

Focus on South-African hub – Upstream model by **2035**: 420 GWp of solar capacity and 325 GWe of electrolysis capacity to be installed

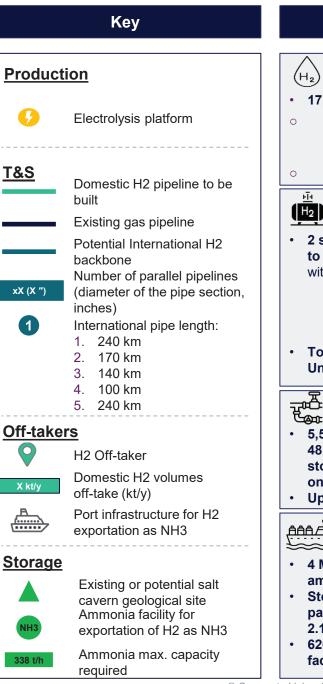
Note (1): Capacity of the largest desalination plants in the world is ~1 Mm3/day Sources: <u>FAO Aquastat</u>, CSIS, Department of Science and Innovation of South-Africa, CVA analysis

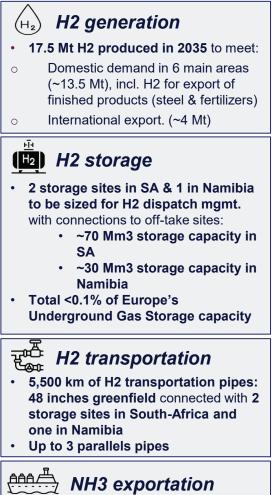


Focus on South-African hub – Midstream and downstream model – Vision by 2030



*When not detailed, the pipe is a simple 48" greenfield pipe Sources: FAO Aquastat, CSIS, Department of Science and Innovation of South-Africa, CVA analysis




Focus on South-African hub – Midstream and downstream model – Vision by 2035

*When not detailed, the pipe is a simple 48" greenfield pipe Sources: <u>FAO Aquastat</u>, CSIS, Department of Science and Innovation of South-Africa, CVA analysis

Design & sizing details

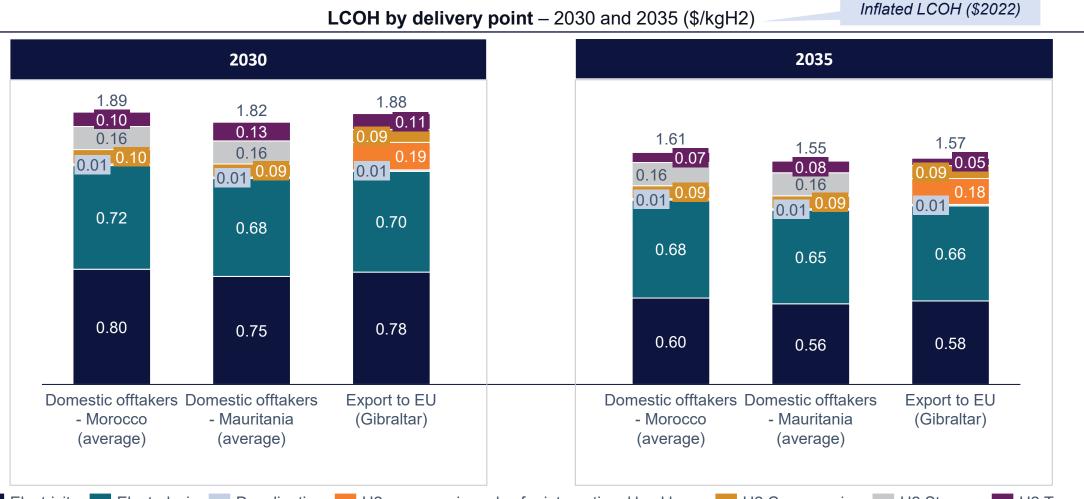
- 4 Mt to be exported by boat as ammonia
- Storage capacity available for line pack process: 4.5 MtH2 in SA and 2.1 Mt in Namibia
- 620 t/h ammonia prod. capacity facility in Namibia and 630 t/h in SA

The H2 hub systems feature designs implying mass scale sizing while corresponding to managed capacities

The upstream and midstream sizing involves capacities falling into standards of existing industrial designs

	Capacity required	Check / benchmark	Capacity management
PV	 138 GWp by 2030 to 420 GWp by 2035 of solar capacity to be installed Surface power capacity density of 1.5 ha / MW 	 Total required surface of 207,000 ha by 2030 and 630,000 ha by 2035 < 0.1% of the total countries area 	
Desalination	 Desalination capacity required : 385 Mm3 by 2030 and 1,350 Mm3 by 2035 5 desalination facilities with a capacity of 250 Mm3/y 	 Desalination plants designed with a capacity of ~250 Mm3/y, i.e. ~70% of the current largest desalination plants in the world (e.g. in RAK, Saudi Arabia or in Taweelah, UAE) 	
Water pipe	 1,570 to 1,810 km of water transportation pipe infrastructures, including one double pipe section by 2035 Water pipe designed with a maximum of 60 inches 	 Total length acceptable, i.e. ~60% of Manmade pipeline Water pipe designed with diameter of 60", i.e. ~75% of the largest water pipeline diameters in the world (e.g. Oguz-Gabala-Baku) 	
Electrolysis	 Units of 2GWp captive solar plants, injecting in electrolysis platforms with a total electrolysis capacity of 104 GWe by 2030 and 325 GWe by 2035 	c c	500 to 1,000x urrent global electrolysis capacity
H2 pipe	 Total cumulated length of greenfield pipes infra. is 5,500 km by 2030 and 10,000 by 2035 / H2 pipes designed with 48 inches diameter, sections with up to 3 parallels pipes 	 <1% of total global brownfield transport infrastructures length in 2020 and around 5 to 10 times Nord Stream gas pipe length 	
Storage	 40 Mm3 by 2030 and ~100 Mm3 by 2035 of metric storage volume required <u>3 potential salt dome geological storage site</u> 	 ~0,1% of total EU underground storage capacities Typical salt cavern volume capacity is 0.5 to 1 Mm3 	
Final product exportation	 98 Mt of steel production to be exported by 2035 and 42 Mt of fertilizers 	 5% of global steel production and 7% of global demand for fertilizers 	

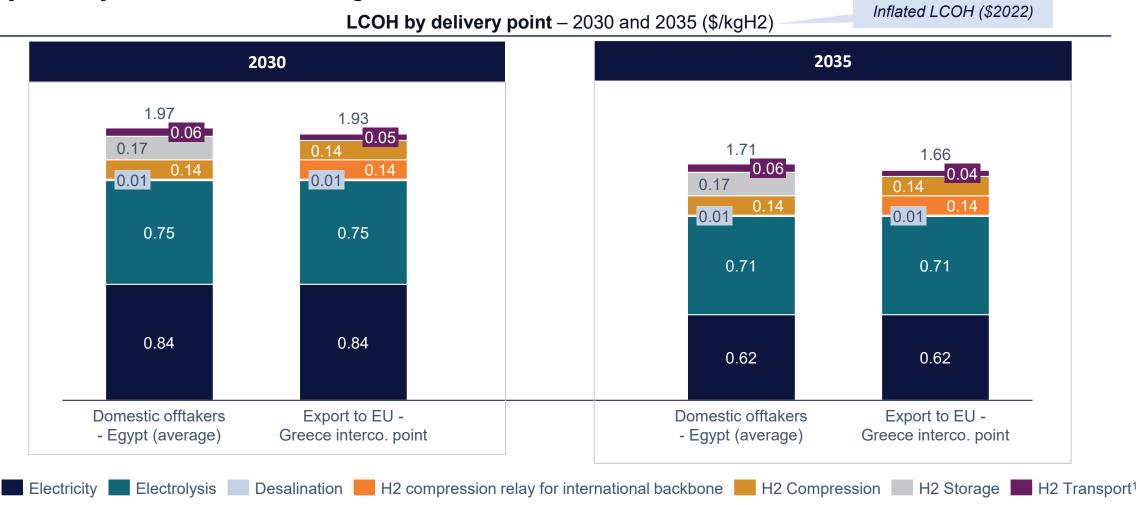
Agenda


- 1. African H2 hubs system design Demand equation to address 2030 and 2035
- 2. African H2 hubs system design Design and sizing of the 3 hubs
- 3. African H2 hubs system design Resulting costs for the 3 hubs
- 4. Value creation impact

Mauritanian / Morocco systems costing – LCOH per delivery zone

LCOHs around 1.8-1.9\$/kgH2 in 2030 both for domestic offtake and EU exports, expected to decrease by ~15% by 2035, to settle around 1.5-1.6\$kgH2

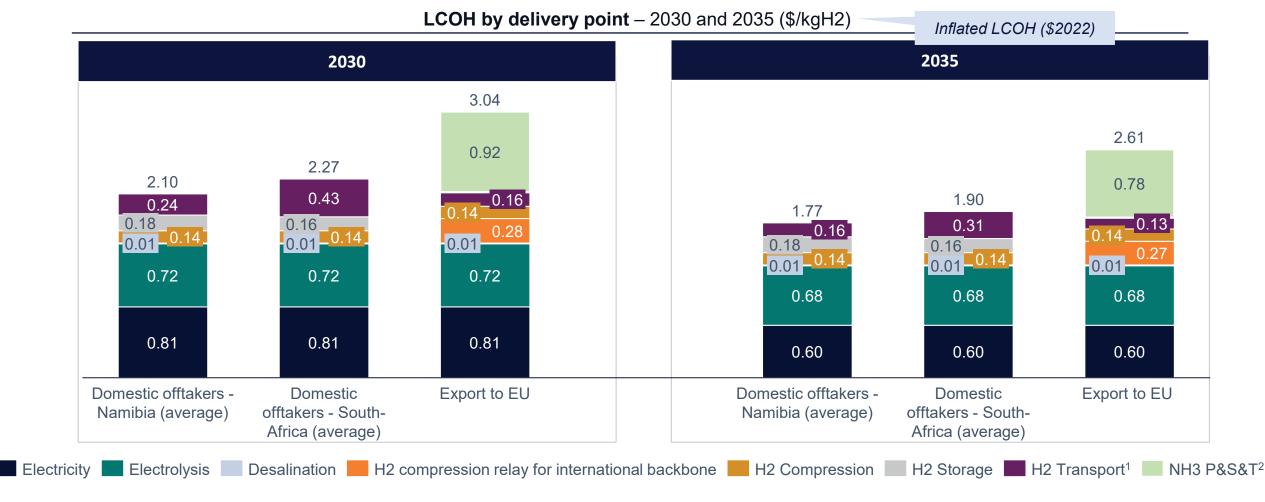
Electricity Electrolysis Desalination H2 compression relay for international backbone H2 Compression H2 Storage H2 Transport¹


Note (1): Corresponds to transportation through greenfield pipes – domestic costs for transportation include domestic greenfield and international backbone proportionally to the share of total production / EU costs for transportation include only international backbone costs

Egypt system costing – LCOH per delivery zone

LCOHs around 1.9-2.0/kgH2 for both domestic offtake and European exports in 2030, expected to decrease by ~15% by 2035, around 1.6-1.7\$/kgH2

Note (1): Corresponds to transportation through greenfield pipes – domestic costs for transportation include domestic greenfield and international backbone / EU costs for transportation include only international backbone costs


© Corporate Value Associates 2022. All rights reserved

Southern Africa systems costing – LCOH per delivery zone

LCOHs around 2-2.3\$/kgH2 for domestic offtake and 3\$/kgH2 for European exports in 2030, expected to decrease by ~15% by 2035 – NH3 exportation costs represent around 30% of total EU H2 costs

Note (1): Corresponds to transportation through greenfield pipes – domestic costs for transportation include domestic greenfield and international backbone proportionally to the share of total production / EU costs for transportation include solve costs for transportation include solve conversion, NH3 storage, loading cost and shipping costs

Sources: BloombergNEF, IEA, NSE, CVA analysis

Systems costing – Key hypotheses for 2030 and 2035

Total investments required around 500 Bn\$ in 2030 and additional 900 Bn\$ in 2035, with solar PV and electrolysis accounting together for >60% of the total CAPEX by 2035

Item		Unit	Western Africa hub		Egypt hub		Southern Africa hub						
			20	2030 2035		2030	2035	2030 2035		35			
			Mor.	Maur.	Mor.	Maur.	2030	2035	S. Afr.	Nam.	S. Afr.	Nam.	
		CAPEX PV	M\$/MWp	0.39 0.30		30	0.39	0.30	0.39		0.30		
		OPEX PV	% CAPEX	2%		2%		2%	2%	2%		2%	
	Solar	PV degradation ¹	%/year	0.35%		0.35%		0.35%	0.35%	0.35%		0.35%	
		Yield	kWh/kWp	2,200	2,400	2,200	2,400	1,990	1,990	2,100	2,100	2,100	2,100
_ _ _		WACC	%	6.5%		6.5%		6.5%	6.5%	6.5%		6.5%	
Upstream		CAPEX Electrolyser	\$/Wp	5/Wp 0.42		0.3	35	0.42	0.35	0.4	42	0.3	35
Jpst	sis + sion	O&M Electrolyser	% CAPEX	2%		2'	2% 2%		2%	2%		2%	
	Electrolysis + Compression	Water desalination CAPEX	M\$	142	158	376	396	594	828	210	95	524	237
	Elec	Water pipe CAPEX	M\$	578	603	1,206	1,207	579	1,187	804	458	997	458
		WACC	%	8%		8% 8%		8%	8%		8%		
	Storage	Storage CAPEX	M\$	3,060	2,650	6,770	6,040	10,750	20,885	3,900	2,420	16,620	5,720
		CAPEX Pipeline (Green Field)	M\$	6,630	7,388	13,144	14,460	18,600	35,908	31,470	9,500	63,560	18,200
Trans- port		OPEX Pipeline (Green Field)	% CAPEX	1	1% 1%		1%	1%	1%		1%		
		WACC	%	6.	.5%	6.5%		6.5%	6.5%	6.5%		6.5	\$%
Total CAPEX (PV, ELY, desalination, elec. transmission and storage, greenfield)		Bn\$	~67	~58	+59	+55	~219	+145	~108	~46	+108	+42	

Note (1): Yields are averages of the different developed areas, and technological improvements of the panels are assumed, explaining yield improvements

Agenda

- 1. African H2 hubs system design Demand equation to address 2030 and 2035
- 2. African H2 hubs system design Design and sizing of the 3 hubs
- 3. African H2 hubs system design Resulting costs for the 3 hubs

4. Value creation impact

Multiple value creation impacts both for local production countries and green H2 import countries – Vision at 50 Mt H2 production / year

Cost competitiveness and differentiation

1.55-1.90 € / kg H2 at delivery points (equivalent to 79-96€ per Brent oil barrel, comparable to historical prices plus CO2)

Growth for local economies

An average of 40 Bn€ of direct GDP created / year all along the project lifetime corresponding to ~5% of the current considered countries' GDPs

Strong impact for the communities

Development of an at scale freshwater system: ~3,500 Mm3 production capacity available on the 5 different countries, i.e. more than 5% of the current volumes consumed locally

ింది **Direct employment** దిదిది **creation**

Massive creation of permanent quality jobs along the value chain

Global energy

Supply of ~25Mt H2 (equiv. ~70 Mtoe) to overseas countries. ~15% of the current EU gas demand, as an illustration

✓ Dedicated captive energy system

Dedicated production and transmission capacities, to avoid disturbing the existing energy system used for current usages

Contribution to decarbonization

~500 Mt CO2 / y avoided in 2035, either by direct usage of H2 or the supply of green commodities (~40% of African CO2 emissions in 2020)

33